When your heart stops beating

Prof Theresa M. Olasveengen MD, PhD University of Oslo / Oslo University Hospital t.m.olasveengen@medisin.uio.no

Conflicts of interest

- No financial conflicts of interest
- Board member, Laerdal Foundation
- Basic Life Support Task Force, International Liaison Committee on Resuscitation (ILCOR)
- Science Advisory Committee, International Liaison Committee on Resuscitation (ILCOR)
- Advanced Life Support Science and Education Committee, European Resuscitation Council (ERC)

If your heart stops in Norway...

- •3723 persons
- 423 survived

- 1016 patients
- 266 survived

If your heart stops in Norway...

66% at home

44% unwitnessed

9 min response time

85% bystander CPR

53% Asystole

Where are we – science, guidelines, ideas...

CPR goals

- Increase recognition of cardiac arrest
- Decrease time to CPR
- Improve CPR quality

Recognition

Dispatch recognition

Systematic review: 46 observational studies

Sensitivity:

20% (95% CI 16, 26) to 98 (95% CI 96, 98)

Specificity:

32% (95% CI 29, 36) to 100% (95% CI 100, 100)

ILCOR review: Dispatcher recognition costr.ilcor.org

RCT - Machine learning assisted dispatch

Copenhagen dispatch center

169 049 calls5254 ML suspected CA calls654 confirmed CA

Randomized to ML support vs. no ML support

Blomberg et al JAMA Network Open 2021

Time to CPR

Dispatch instructions

• 16 studies:

t-CPR vs. no t-CPR offered

- ~ 27 more ROSC/ 1 000 OHCA
- ~ 9-14 more intact survivors / 1000 OHCA

→ Good system better than bad system

ILCOR review: Dispatcher instruction in CPR costr.ilcor.org

Dispatch instructions

• 14 studies:

t-CPR vs. no CPR

• ROSC: ORadj 1.51 (1.32, 1.73)

• Intact survival: ORadj 1.54 (1.35, 1.76)

→ Any CPR is better than no CPR

t-CPR vs. standard CPR

• ROSC: ORadj 1.04 (0.94, 1.14)

Intact survival: ORadj 1.12 (0.94, 1.34)

→ t-CPR is as good as standard CPR!

ILCOR review: Dispatcher instruction in CPR costr.ilcor.org

CPR quality

Video-dispatch assisted CPR

Copenhagen dispatch center

52 OHCA calls

90 bystanders

Video on after CPR was started

All quality parameters improved!

RESUSCITATION 168 (2021) 35-43

Linderoth et al Resuscitation 2021

Video-dispatch assisted CPR

- 2 Observational studies
- 1720 + 2109 OHCA, South Korea
- Second person available for video

Unadjusted odds:
 OR 1.89 ✓
 OR 3.30 ✓

Adjusted odds: adjOR 1.28 X & adjOR 2.11 √

- PSM OR 0.91 X

Lee et al *Resuscitation* 2020

Lee et al Resuscitation 2021

Audiovisual feedback assisted CPR

CPR quality

- 1 cluster RCT (Hostler et al. 2011, n=1586), <u>statistically</u> significant differences

Compression rate -5 / min,

depth +1.6 mm,

CPR fraction +2%,

- 9 obs studies (n=2263)

-> 11/20 CPR metrics <u>statistically</u> significant differences

Survival

- 1 cluster RCT (Hostler et al. 2011) -> No effect on any survival outcomes
- -9 obs studies -> 2/22 survival outcomes with effect

ILCOR review: Feedback devices

Audio/tacktile feedback devices

Cardio First Angel™ Gorhani et al 2019

CPR quality

- No data!

Survival

2 RCTs (n=980)

- Vahedian-Azimi et al. 2016; 80 ICU pt, 72 % vs. 35 % ROSC
- Goharani et al. 2019; 8 ICUs, 9 month period 2015 900 ICU pt, 54% vs. 28.4% survival

ILCOR review: Feedback devices

CPR Quality

Provider

Compression rate, depth, recoil Ventilation rate (+ volume) or

Patient

EtCO₂, NIRS, ART, CVP

Cardiac Output = HR x SV

(patient) (provider)

EtCO2 Compression rate

Compression depth

Correct hand position

Complete release

Feedback to increase cardiac output?

Pilot trial: 30 patients

Difference in EtCO₂ between hand positions

0.2-3.4 kPa (2-26 mmHg)

>1 kPa (8 mmHg) in half of the patients

Qvigstad et al. Resuscitation 2013

Physiologic feedback – EtCO2 /dBP

POPULATION

575 Male **499** Female

Pediatric patients aged ≥37 weeks' corrected gestational age and <18 years and underwent CPR while in the ICU

Median age: **0.6** years

LOCATIONS

18
Pediatric ICUs
in the US

INTERVENTION

1389 Events randomized 1074 Events analyzed

526

Bundled intervention

All ICU staff trained in CPR on manikins provided to their units and participated in monthly clinical event debriefings

Usual care

Usual care during cardiac arrest based on the existing resuscitation practices of each ICU

548

PRIMARY OUTCOME

Survival to discharge with favorable neurologic outcome by a Pediatric Cerebral Performance Category score of 1 to 3 or no change from baseline (score range, 1 [normal] to 6 [brain death or death])

Sutton et al JAMA 2022

Physiologic feedback – EtCO2 /dBP

Event quality outcomes				
Adequate SBP ⁹	143/197 (72.6)	127/195 (65.1)		
Adequate DBP ^h	180/198 (90.9)	160/199 (80.4)		
High-quality CPR with adequate SBP ⁱ	93/197 (47.2)	74/195 (37.9) 89/199 (44.7)		
High-quality CPR with adequate DBP ^j	112/198 (56.6)			
Target compression depth ^k	28/114 (24.6)	11/66 (16.7)		
Target chest compression rate ^l	217/273 (79.5)	175/242 (72.3)		
Target chest compression fraction ^m	196/273 (71.8)	177/242 (73.1)		

Sutton et al JAMA 2022

More invasive strategies...

Brede et al. JAHA 2019

Inoue et al. JAHA 2020

But don't mess up the basics...

١					
ı	nc	ILISI	on	crite	ria

Presumed cardiac cause

Witnessed arrest

Bystander resuscitation

Shockable first rhythm (VF or VT)

Age 18-65

Paramedic CPR within 15 min

>10 min of ALS without ROSC

<60 min from CA to ECMO cannulat

	All patients				ECPR candidates	
Outcome	Before n = 1086	After n = 3135	p-value	Before n = 48	After n = 100	p-value
Sustained ROSC* (%)	351 (32)	747 (24)	< 0.001	30 (63)	50 (50)	0.2
24 -h survival (%)	278 (26)	743 (24)	0.2	29 (60)	52 (52)	0.3
30 days survival (%)	167 (15)	464 (15)	0.6	21 (44)	37 (37)	0.4
CPC score 1-2** (%)				21 (100)	30 (81)	0.03
ALS during transport and on arrival to hospital (%)	56 (5)	121 (4)	0.7	7 (15)	26 (26)	0.1
Time from CA to arrival at hospital						0.3
≤40 min				2	14	
41-59 min				2	8	
≥60 min				3	4	

Alm-Kruse et al Resuscitation 2021

Main points

- No 1. Don't mess up where we actually know what to do
- No 2. Continue to push for margins and look for new therapies (but not at the expense of No. 1)
- No 3. We need improved tools to assess futility

Thank you!

Questions/comments: t.m.olasveengen@medisin.uio.no

