HfO2/ β -Ga2O3(-201) interface electrical properties after thermal treatment

Karim Cherkaoui¹, Jonas Valentijn¹, Brendan Roycroft¹, Paolo La Torraca¹, Arno Delrat¹, Adam Gruszecki², Joy Roy², Roberta Hawkins², Robert Wallace², Paul Hurley¹, Chadwin Young²

¹ Tyndall National Institute, University College Cork, ² Department of Materials Science and Engineering, University of Texas at Dallas

 β -Ga2O3 is a material that has attracted particular attention recently [1]. It has an ultra wide bandgap (4.8 eV), a high critical field and high electron mobility values where the electron concentration can be tuned over a wide range. This combination of electronic and wafer scale properties opens new possibilities in power electronics and applications in harsh environments.

The interface between β -Ga2O₃ and the dielectric is critical for MOSFET devices since the electrically active defects (interface states or border traps) can degrade the device electrical properties and generate instabilities by trapping/emitting carriers from/to the device channel. There has been a lot of interest in the HfO2/ β -Ga2O₃ MOS system[2,3].

In this study we have explored the electrical properties of the HfO_2/β -Ga2O3 interface post thermal treatment. Impedance measurements were performed to investigate the properties of MOS devices annealed at 4500C for 5 min in different ambient atmospheres. Physics based simulation of the MOS electrical parameters as well as photo-depopulation experiments were employed to extract the distribution in energy and space of electrically active defects.

The 4500C annealing treatment degrades the HfO2/ β -Ga2O3 interface regardless of the ambient (N2, N2+H2 or O2). The charge trapping in the HfO2 increases as compared to the control sample. The photo-depopulation results show the presence of defects likely located in the HfO2 layer at an energy band centred ~3eV below the conduction band. A similar defect band was detected in the HfO2/Si system using a comparable technique [4].