## Strain-driven Dislocation Filtering for Epitaxial Growth of InP on (oo1) Silicon

Shangfeng Liu ${ }^{1}$, Bogdan-Petrin Ratiu ${ }^{1}$, Hui Jia ${ }^{2}$, Zhao Yan $^{1}$, Ka Ming Wong ${ }^{1}$, Mickael Martin ${ }^{3}$, Mingchu Tang ${ }^{2}$, Thierry Baron ${ }^{3}$, Huiyun Liu ${ }^{2}$, Qiang $\mathrm{Li}^{1}$
${ }^{1}$ School of Physics and Astronomy, Cardiff University, Cardiff, UK, ${ }^{2}$ Dept. of Electronic \& Electrical Engineering, University College London, London, UK, ${ }^{3}$ Univ. Grenoble Alpes, CNRS, CEA-LETI, MINATEC, LTM, F-38054 Grenoble, France

Introduction: Heteroepitaxy of InP on CMOS-standard (001) Si substrates offers a promising path for monolithic integration of InP-based optoelectronic devices with silicon photonics components [1-2]. However, the approximate $8 \%$ lattice mismatch and consequent high defect density, compounded by anti-phase boundaries (APBs) inherent in growing polar materials on non-polar substrates, significantly degrade the devices' performance and reliability. In this work, we mitigate these issues by introducing an InAsP-based dislocation filter in the InP heteroepitaxy on Si , which effectively reduces the threading dislocation density (TDD) to $7.3 \times 107 \mathrm{~cm}-2$ with a buffer layer of $\sim 2 \mu \mathrm{~m}$ thickness.

Methods: The material growth starts from an APB-free InP/GaAs/Si template originally grown on a 300 mm on-axis (001) Si wafer [3]. This 300 mm InP template was cleaved into smaller pieces for further InP epitaxy within a close-coupled showerhead MOCVD reactor. The InAsP and InP layers were grown at a surface temperature of $590^{\circ} \mathrm{C}$, using TMIn, TBAs, and TBP as group III and group V precursors respectively.

Results and conclusion: We explored the dislocation filtering effects of various strained interlayers. As shown by the electron channelling contrast imaging (ECCI) results, the partially relaxed InAsP-based dislocation filter layer effectively reduces the TDD of $7.5 \times 108 \mathrm{~cm}-2$ to $7.3 \times 107 \mathrm{~cm}-2$. Complementary XRD analysis confirmed the enhanced crystalline quality and the tensile strain in the buffer layers, and correlated these findings with surface morphology as characterized by AFM.

