TiW-based InP DHBT technology for next generation communication systems analog front-end integrated circuits Virginie Nodjiadjim, Romain Hersent, Muriel Riet, Colin Mismer, Nil Davy, Filipe Jorge, Agnieszka Konczykowska, Bertrand Ardouin

Indium Phosphide (InP) double heterojunction bipolar transistors (DHBTs) have enabled the realization of very-high performances >100-GHz wireless and >100-Gbaud optical transceivers' analog-front-end integrated circuits (ICs) [1, 2]. To further improve the operating frequencies while handling large output power, DHBTs with TiW emitter are an attractive path towards THz technologies [3]. We report a high-yield TiW-based InP-DHBT technology used to realize high-performance linear driver and analog-multiplexer (AMUX)-driver ICs.

The InP DHBT structure and process are similar to [4, 5] except for a 20% thinner base, drastically shrunk emitter layers and the use of a TiWbased emitter metal stack with SiN sidewalls (Fig.1). The obtained fabrication yield on the 3-inch wafer (>98%) is similar to our reference process [5].

The $0.4 \times 5-\mu m^2$ DHBTs' peak current gain is >40 and the base and collector ideality factors are 1.36 and 1.09, respectively (Fig.2). The devices exhibit a 4.2-V breakdown voltage BVCE0 at a $0.03-mA/\mu m^2$ collector current density, JC, (Fig.3). Peak fT/fMAX, extracted from on-wafer S-parameter measurements up to 110 GHz, are above 400/520 GHz, respectively, at VCE=1.6V and a JC~6mA/ μm^2 (Fig.4). The linear driver and AMUX-driver [2] implemented in this technology are composed of 22 and 76 DHBTs, respectively, and show high IC yield (Fig.5). They demonstrate PAM-4 output swings of 3.2-Vppd at 64-GBd and 2.3-Vppd at 100-GBd, respectively, with clear eye-opening (Fig.6).

This TiW-based technology will enable <0.4-µm-emitter-width DHBTs with reduced base-link resistance for higher frequency performances.