Metabolic Response to Surgery

Jonas Nygren
Dept Surgery, Ersta Hospital

SFAI

Perioperative Medicine Göteborg 12/9, 2019

Disclosures

None

The response to major surgery leads to morbidity

Metabolic homeostasis

Inflammation, insulin resistance, catabolism

Fluid balance

Hypoperfusion, overhydration, oedemia

Pain

Somatic, visceral, neuropathic

Gut dysfunction

Nausea, vomiting, paralysis

Cognitive dysfunction

Delirium, confusion, sleep disruption

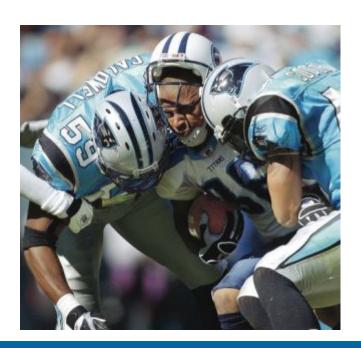
Post-operative deconditioning

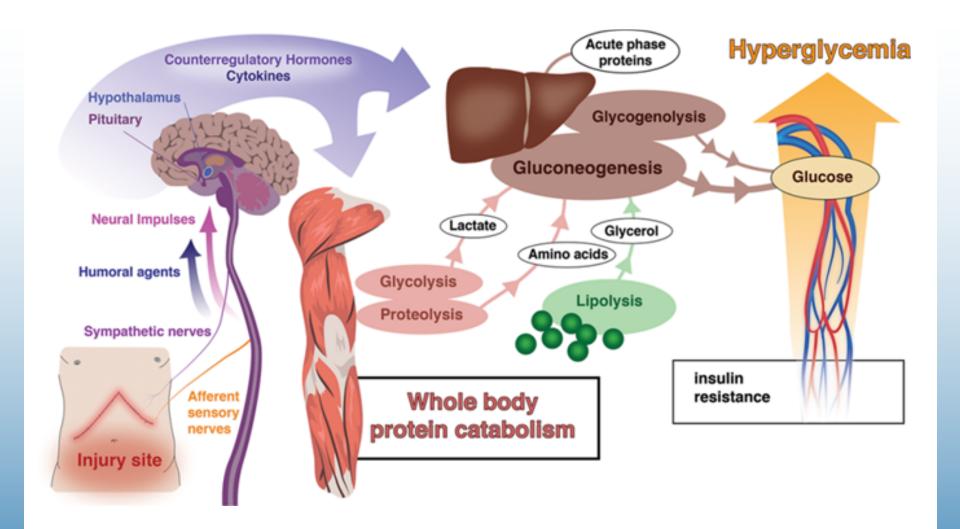
Immobilisation, fatigue, anemia, starvation

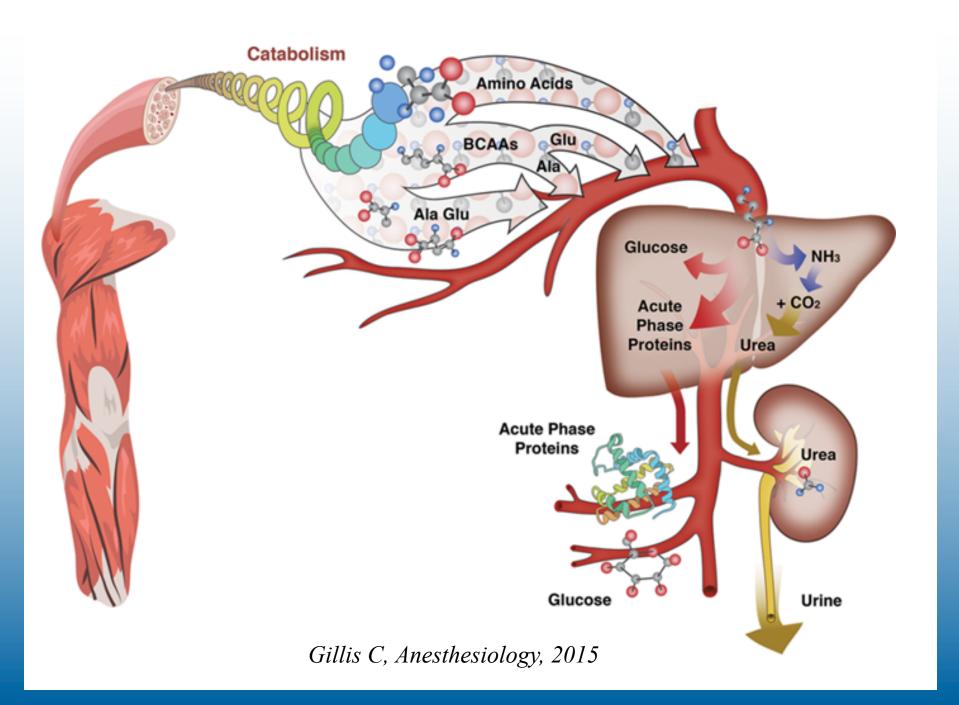
It's more to it than a perfect operation

Metabolic response to trauma

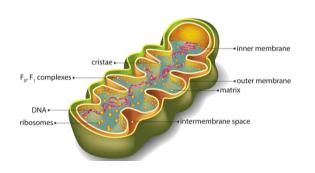
Neuroendocrine response

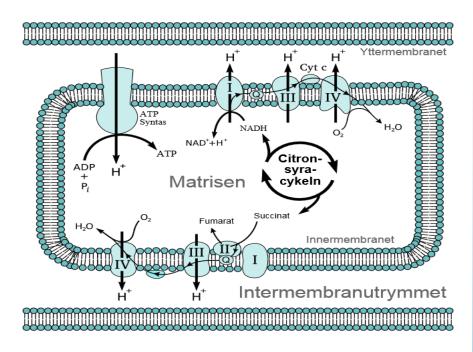

• Cortisol, catecholamines, glucagon, GH


Insulin resistance

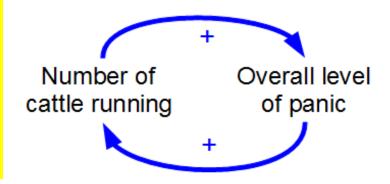

- Catabolism
- Lipolysis
- Protein breakdown
- Hyperglycemia

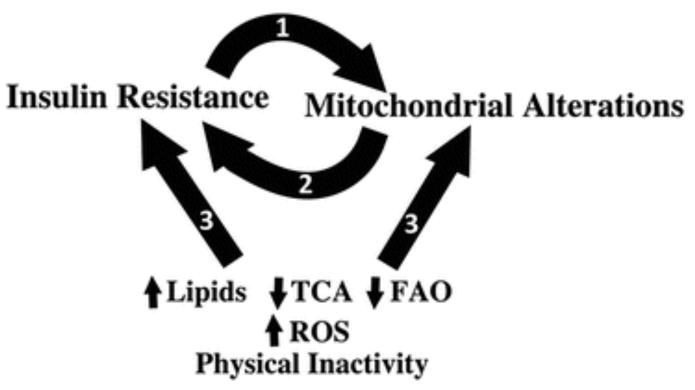
Inflammation


Cytokines

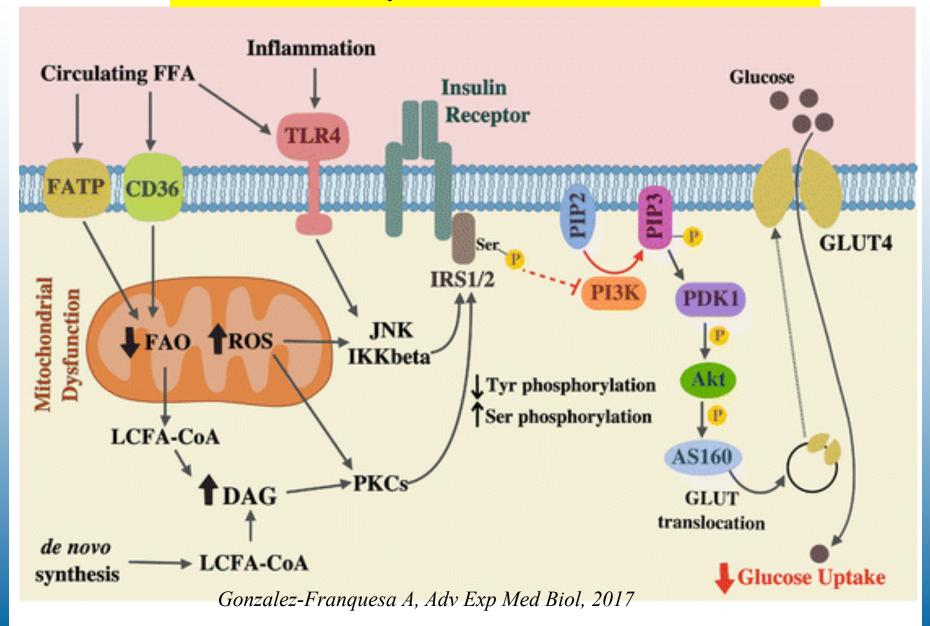


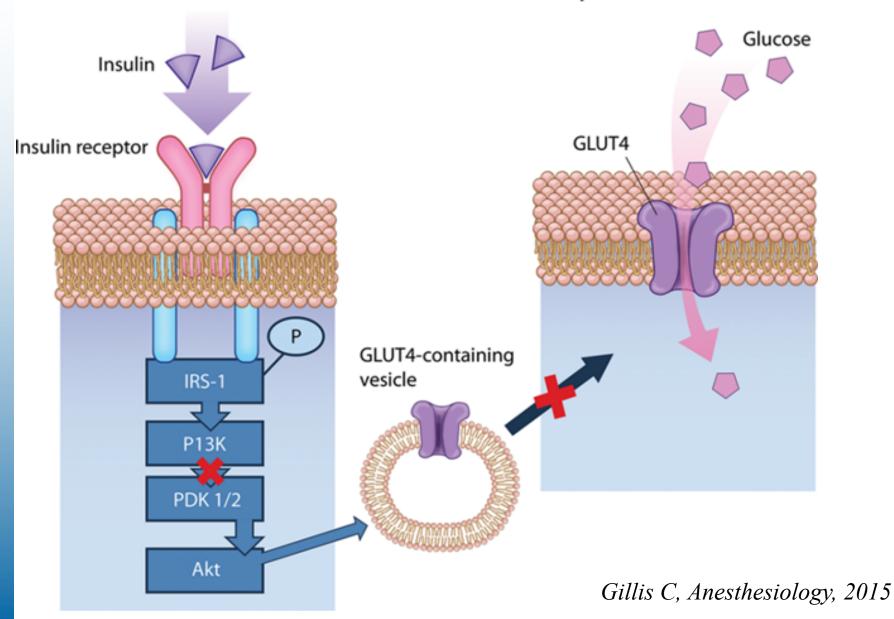
Mitochondrial dysfunction





- Energy production / oxidative phosphorylation / ATP
- Decrerased fatty acid oxidation
- Inhibiting insulin action / Insulin resistance
- Toxic lipid metabolite accumulation
- ROS production / oxidative stress
- Uncoupling


Harmful positive feedback loop



Gonzalez-Franquesa A, Adv Exp Med Biol, 2017

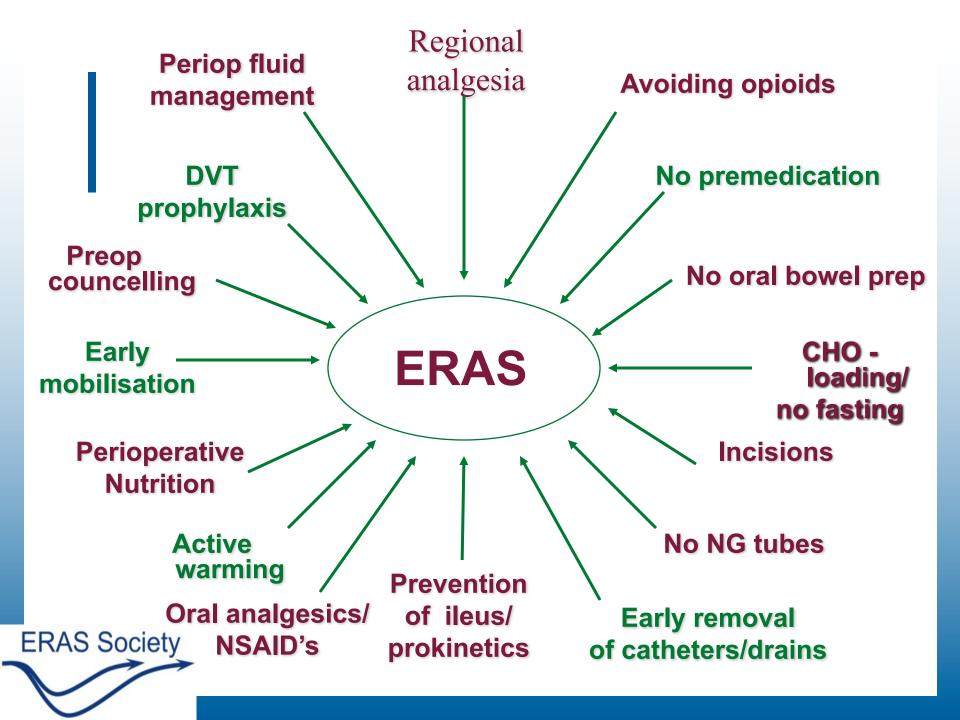
Mitochondrial dysfunction and insulin resistance

Effect of Insulin on Glucose Uptake

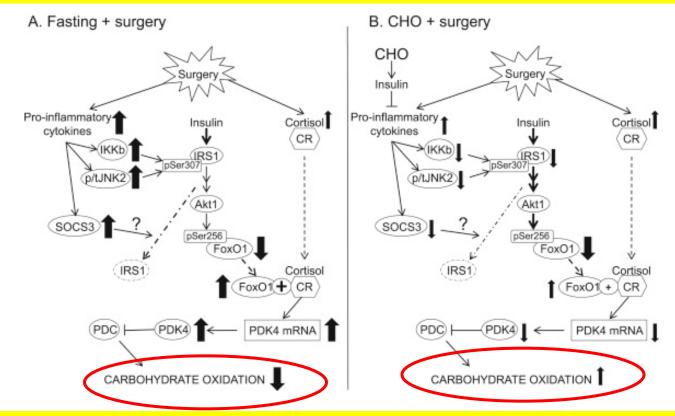
Preoperative insulin resistance increased risk for complications

273 patients open cardiac surgery, insulin sensitivity determined at the end of op

Complication	OR for every decrease by 1 mg/kg/min (Insulin sensitivity)	P value
Death	2.33 (0.94-5.78)	0.067
Major complication	2.23 (1.30-3.85)	0.004
Severe infection	4.98 (1.48-16.8)	0.010
Minor infection	1.97 (1.27-3.06)	0.003


The ORs were adjusted for potential confounders

Sato et al, JCEM 2010; 95: 4338-44


Controlling perioperative physiology Many small pieces of the puzzle

	Hormonal	Metabolic	Inflammatory
Minimally invasive surgery	✓	✓	✓
Neural blockade	✓	✓	/
Opioid-sparing pain control	✓		
Prevention of hypothermia	✓	✓	
Perioperative fluid management	✓		
Anabolic agents (e.g., growth hormone)	✓	✓	
Glucocorticoids	✓	✓	✓
β-blockade	✓	✓	
α2-agonists	✓		✓
Exercise	✓	✓	✓
Carbohydrate loading	✓	✓	✓
Immunonutrition		✓	✓
Early oral nutrition	✓	/	✓
Adequate dietary protein		✓	
Insulin (glycemic control)	✓	✓	✓

Postoperative muscle mitochondrial dysfunction improves by carbohydrate loading

Preoperative carbohydrate loading

- Reduced muscle inflammatory response
- Improved inhibition of FOX01 mediated PDK4
- Supported by clinical studies
 - (Awad S, Ann Surg, 2010, Wang ZG, BJS, 2010, Yu Y, ChJS, 2013)

ERAS and clinical outcome?

Hospital stay

Review of 6 RCTs (n=452)

•	E	RAS			TC			Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95%	CI IV, Random, 95% CI
Anderson 2003 ¹⁹	4	1.8	14	7	2.1	11	19.3%	-3.00 [-4.56, -1.44	4] —
Delaney 2003 ²⁰	5.2	2.5	31	5.8	3	33	21.7%	-0.60 [-1.95, 0.75	5j
Gatt 2005 ²¹	6.6	4.4	19	9	4.6	20	9.6%	-2.40 [-5.22, 0.42	2]
Khoo 2007 ²²	5	8.5	35	7	14.75	35	3.1%	-2.00 [-7.64, 3.64	4]
Muller 2009 ³	6.7	4.84	76	10.3	4.97	75	19.2%	-3.60 [-5.17, -2.03	3] —
Serclova 2009 ⁴	7.4	1.3	51	10.4	3.1	52	27.1%	-3.00 [-3.92, -2.08	3] —
Total (95% CI)			226			226	100.0%	-2.51 [-3.54, -1.47	n ◆ l
Heterogeneity: Tau ² =	0.80; CI	ni² = 11	1.04, df	= 5 (P	= 0.05);	$I^2 = 55$	%		10 5 10
Test for overall effect:	Z = 4.76	(P < (0.00001	1)					-10 -5 0 5 10 Favours experimental Favours control

Complications

		ز	TC			Risk Ratio	Risk	Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Rand	om, 95% CI
Anderson 2003 ¹⁹	4	14	5	11	6.0%	0.63 [0.22, 1.80]		
Delaney 2003 ²⁰	7	31	10	33	9.6%	0.75 [0.32, 1.71]	-	
Gatt 2005 ²¹	9	19	15	20	23.1%	0.63 [0.37, 1.08]	-	†
Khoo 2007 ²²	9	35	16	35	14.9%	0.56 [0.29, 1.10]	-	†
Muller 2009 ³	16	76	37	75	27.5%	0.43 [0.26, 0.70]	-	
Serclova 2009 ⁴	11	51	25	52	18.8%	0.45 [0.25, 0.81]	-	
Total (95% CI)		226		226	100.0%	0.53 [0.41, 0.69]	♦	
Total events	56		108					
Heterogeneity: Tau ² = 0	0.00; Chi ²	= 2.26	, df = 5 (F	P = 0.81); $I^2 = 0\%$	ŀ	0.01 0.1	1 10 100
Test for overall effect: 2	Z = 4.81 (P < 0.0	0001)				ours experimental	

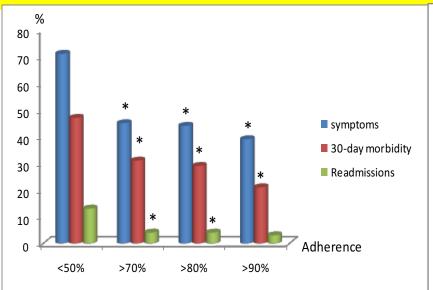
Vardhan, Clin Nutr, 2010

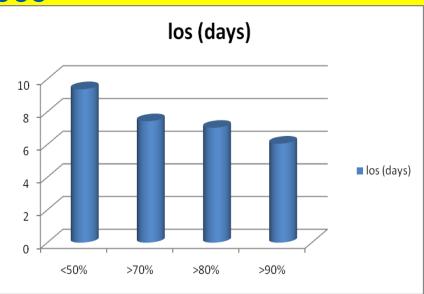
Lap CRC surgery

ERAS vs Trad

Meta-analysis
13 RCT, n=1298

LOS


- Shorter LOS
- Reduced complications
- Faster return
 - bowel function
- Less SIRS
 - CRP
 - IL6


Compl

Study		%
ID	WMD (95% CI)	Weight
Los Took Civ(0041)	100/110 000	10.00
Lee, Taek-Gu(2011)	-1.00 (-1.18, -0.82)	10.66
van Bree,S.H.(2011)	-1.65 (-2.40, -0.90)	8.84
Vlug,M.S.(2011)	-0.97 (-1.17, -0.77)	10.62
Wang,G.(2012)	-1.10 (-2.99, 0.79)	4.47
Wang,Q.(2011)	-1.50 (-1.67, -1.33)	10.68
Lee,S.M.(2013)	-0.33 (-0.64, -0.02)	10.39
Feng,F.(2014)	-1.93 (-2.61, -1.25)	9.13
Mari,G.M.(2014)	-2.95 (-4.28, -1.62)	6.35
Taupyk,Y.(2015)	-3.70 (-4.15, -3.25)	10.01
Mari,G.M.(2016)	-2.20 (-3.13, -1.27)	8.04
Wang,G.(2011)	-2.50 (-3.60, -1.40)	7.32
Shetiwy,M.(2017)	-8.82 (-11.12, -6.52)	3.49
Overall (I-squared = 95.3%, p = 0.000)	-2.00 (-2.52, -1.48)	100.00
NOTE: Weights are from random effects analysis		
Study		%
Study ID	RR (95% CI)	% Weight
	RR (95% CI)	
	RR (95% CI) 0.50 (0.21, 1.20)	
IDi		Weight
Lee, Taek-Gu(2011)	0.50 (0.21, 1.20)	Weight 8.94
Lee, Taek-Gu(2011) van Bree, S.H.(2011)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82)	Weight 8.94 7.01
Lee, Taek-Gu(2011) van Bree, S.H.(2011) Vlug, M.S.(2011)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46)	8.94 7.01 14.52
Lee, Taek-Gu(2011) van Bree, S.H. (2011) Vlug, M.S. (2011) Veenhof, A.A.F.A. (2012)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10)	8.94 7.01 14.52 5.09
Lee, Taek-Gu(2011) van Bree, S.H. (2011) Vlug, M.S. (2011) Veenhof, A.A.F.A. (2012) Wang, G. (2012)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86)	8.94 7.01 14.52 5.09 5.58
Lee, Taek-Gu(2011) van Bree, S.H.(2011) Vlug, M.S.(2011) Veenhof, A.A.F.A.(2012) Wang, G.(2012) Wang, Q.(2011)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86) 0.27 (0.06, 1.19)	8.94 7.01 14.52 5.09 5.58 4.69
Lee, Taek-Gu(2011) van Bree, S.H.(2011) Vlug, M.S.(2011) Veenhof, A.A.F.A.(2012) Wang, G.(2012) Wang, Q.(2011) Lee, S.M.(2013)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86) 0.27 (0.06, 1.19) 1.77 (0.97, 3.24)	8.94 7.01 14.52 5.09 5.58 4.69 11.85
Lee, Taek-Gu(2011) van Bree, S.H.(2011) Vlug, M.S.(2011) Veenhof, A.A.F.A.(2012) Wang, G. (2012) Wang, Q. (2011) Lee, S.M.(2013) Feng, F. (2014)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86) 0.27 (0.06, 1.19) 1.77 (0.97, 3.24) 0.21 (0.05, 0.90)	8.94 7.01 14.52 5.09 5.58 4.69 11.85 4.76
Lee, Taek-Gu(2011) van Bree, S.H. (2011) Vlug, M.S. (2011) Veenhof, A.A.F.A. (2012) Wang, G. (2012) Wang, G. (2011) Lee, S.M. (2013) Feng, F. (2014) Mari, G.M. (2014)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86) 0.27 (0.06, 1.19) 1.77 (0.97, 3.24) 0.21 (0.05, 0.90) 3.00 (0.13, 70.30)	8.94 7.01 14.52 5.09 5.58 4.69 11.85 4.76
Lee, Taek-Gu(2011) van Bree, S.H. (2011) Vlug, M.S. (2011) Veenhof, A.A.F.A. (2012) Wang, G. (2012) Wang, G. (2011) Lee, S.M. (2013) Feng, F. (2014) Mari, G.M. (2014) Taupyk, Y. (2015)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86) 0.27 (0.06, 1.19) 1.77 (0.97, 3.24) 0.21 (0.05, 0.90) 3.00 (0.13, 70.30) 0.63 (0.06, 6.62)	8.94 7.01 14.52 5.09 5.58 4.69 11.85 4.76 1.33 2.25
Lee, Taek-Gu(2011) van Bree, S.H.(2011) Vlug, M.S. (2011) Veenhof, A.A.F.A. (2012) Wang, G. (2012) Wang, Q. (2011) Lee, S.M. (2013) Feng, F. (2014) Mari, G.M. (2014) Taupyk, Y. (2015) Mari, G.M. (2016)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86) 0.27 (0.06, 1.19) 1.77 (0.97, 3.24) 0.21 (0.05, 0.90) 3.00 (0.13, 70.30) 0.63 (0.06, 6.62) 0.80 (0.40, 1.58)	8.94 7.01 14.52 5.09 5.58 4.69 11.85 4.76 1.33 2.25 10.94
Lee, Taek-Gu(2011) van Bree, S.H.(2011) Vlug, M.S.(2011) Veenhof, A.A.F.A.(2012) Wang, G. (2012) Wang, Q. (2011) Lee, S.M.(2013) Feng, F. (2014) Mari, G.M. (2014) Taupyk, Y. (2015) Mari, G.M. (2016) Wang, G. (2011)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86) 0.27 (0.06, 1.19) 1.77 (0.97, 3.24) 0.21 (0.05, 0.90) 3.00 (0.13, 70.30) 0.63 (0.06, 6.62) 0.80 (0.40, 1.58) 0.50 (0.32, 0.80)	8.94 7.01 14.52 5.09 5.58 4.69 11.85 4.76 1.33 2.25 10.94 13.51
Lee, Taek-Gu(2011) van Bree, S.H.(2011) Vlug, M.S.(2011) Veenhof, A.A.F.A.(2012) Wang, G.(2012) Wang, G.(2012) Wang, G.(2011) Lee, S.M.(2013) Feng, F.(2014) Mari, G.M.(2014) Taupyk, Y.(2015) Mari, G.M.(2016) Wang, G.(2011) Shetiwy, M.(2017)	0.50 (0.21, 1.20) 0.27 (0.09, 0.82) 1.00 (0.69, 1.46) 0.27 (0.07, 1.10) 0.50 (0.13, 1.86) 0.27 (0.06, 1.19) 1.77 (0.97, 3.24) 0.21 (0.05, 0.90) 3.00 (0.13, 70.30) 0.63 (0.06, 6.62) 0.80 (0.40, 1.58) 0.50 (0.32, 0.80) 0.38 (0.17, 0.85)	8.94 7.01 14.52 5.09 5.58 4.69 11.85 4.76 1.33 2.25 10.94 13.51 9.53

Ni X, J Gastrointest Surg, 2019

Compliance to ERAS predict outcomes after colorectal cancer surgery n=953

- Predictors for improved clinical outcome
 - Preoperative carbohydrate loading
 - Perioperative fluid volume

Table 1 Modified fast-track care perioperative plan

Preoperative

Detailed information of the nature of the surgery and perioperative care

Emphasis on the plan for early discharge, specifically <2 days

* Bowel preparation: mechanical and oral antibiotics
IV antibiotics 30 min before initiation of the procedure
Intraoperative

8-10 mg dexamethasone at induction of anesthesia Laparoscopic approach

No use of drains and tubes

No use of epidural anesthesia No use of urinary catheter for right and transverse colon resections; immediate removal of catheter after low anterior colon resections

Postoperative

Admission to regular nursing floor Immediate postoperative general diet that was emphasized to the nursing staff

* Ambulation same evening of surgery

No use of patient-controlled analgesia pumps; pain control

 achieved with routine IV ketorolac and supplemented as needed with IV and oral narcotics

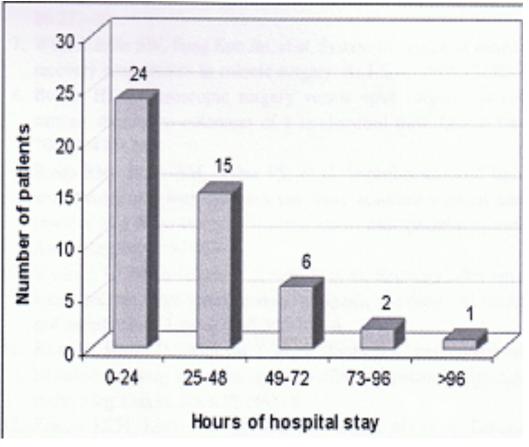
No use of laxatives or prokinetics

Postoperative reinforcement of discharge plan by attending surgeon

Neither flatus nor bowel movement a requirement for discharge

Patient agreement of readiness and acceptance of discharge

Follow-up evaluation at outpatient clinic within 1 wk after discharge


IV = intravenous.

ERAS

Lap Colonic resection

- n=48
- 2 Complications
- 1 Readmission

Undernutrition: Nutritional repletion required

NRS-20024: >5*

SGA⁶³: C

Weight loss⁶³: >10–15% within 6 months

 BMI^{63} : <18 kg/m²

Poor functional capacity: Consider prehabilitation

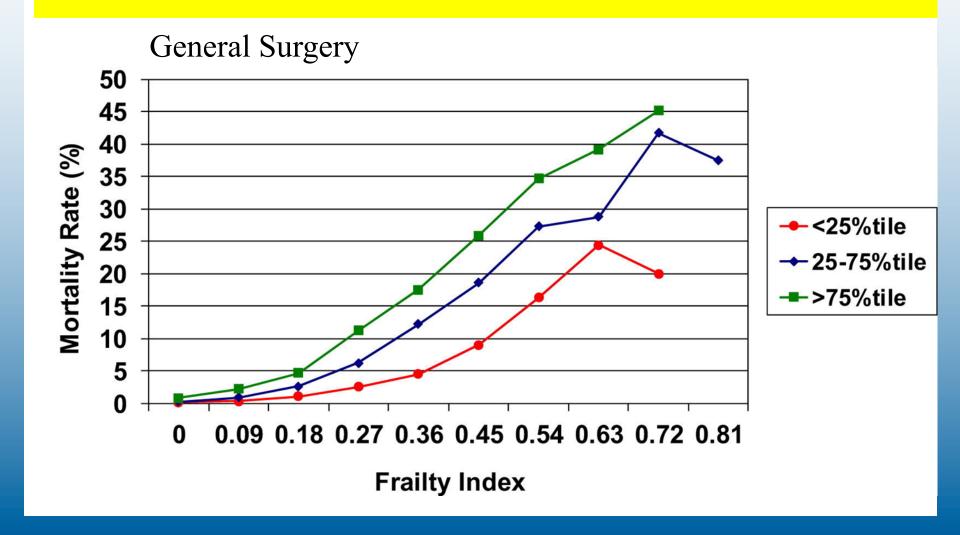
Six-minute walking test^{161,169}: <60% of predicted*

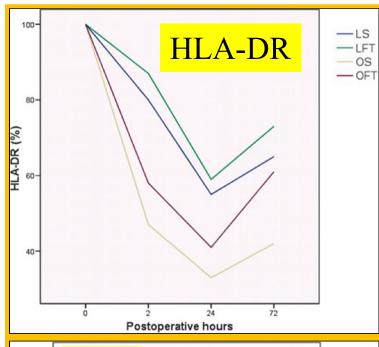
Frailty: Consider prehabilitation

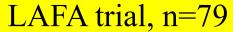
Frailty index¹⁶⁴: Increase in risk for each unit increase in this 11-point frailty index

Fried¹⁶²: Frailty is identified by the presence of three or more components

Poor glycemic control: Appropriate intervention before surgery HbA1c¹⁵⁷: >6%*

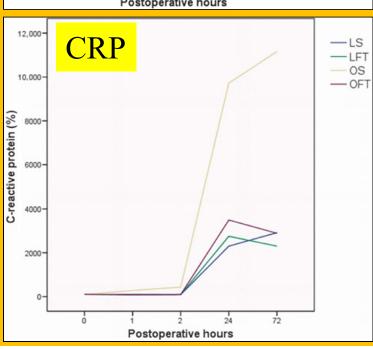

Predicted six-minute walk test is a calculation based on gender and age. 169,172

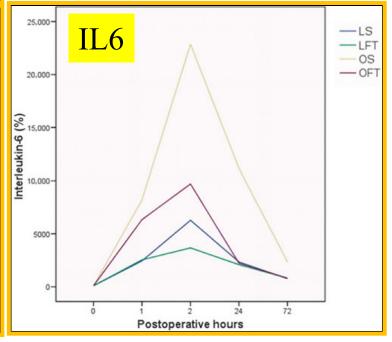

* Based on little available evidence to identify preoperative cutoff value for surgical patients.


BMI = body mass index; HbA1c = glycated hemoglobin; NRS-2002 = nutritional risk screening tool-2002; SGA = subjective global assessment.

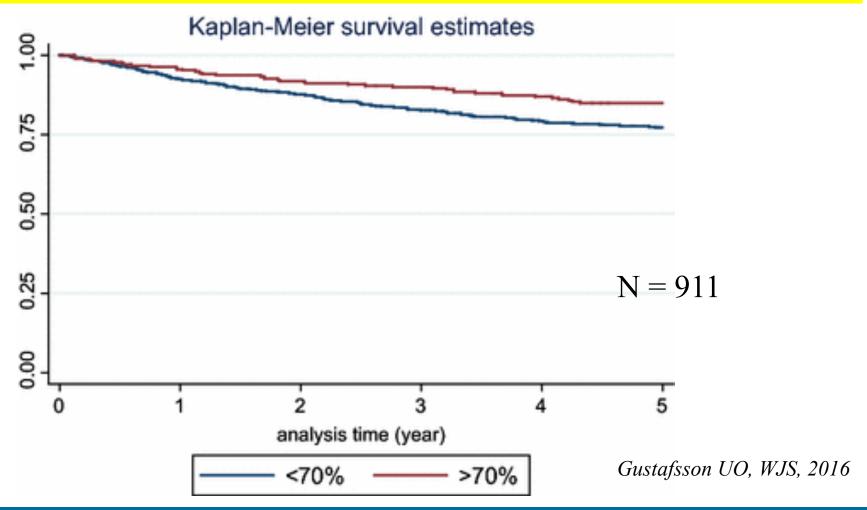
Frailty index as a predictor of postoperative morbidity and mortality

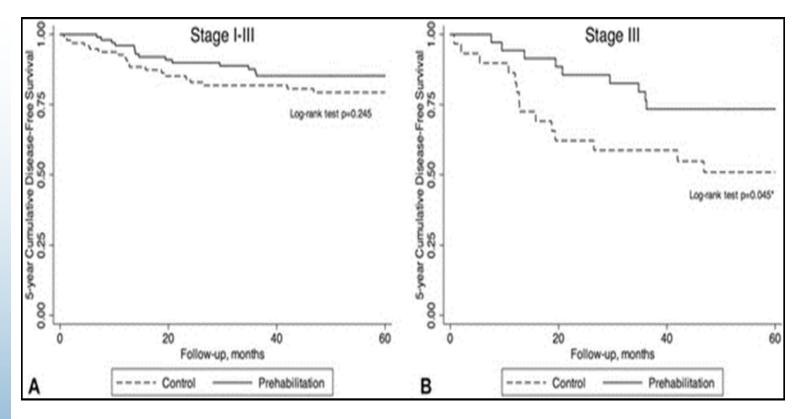
N= 971 434 (NSQIP)


Veenhof A, Ann Surg, 2012


LS Lap Standard

LFT Lap FT


OS Open Standard


OFT Open FT

Increased ERAS compliance 42% less cancer specific death at 5 years

N = 202

Improved Disease-free Survival After Prehabilitation for Colorectal Cancer Surgery.

Trepanier, Maude; Minnella, Enrico; Paradis, Tiffany; Awasthi, Rashami; Kaneva, Pepa; Schwartzman, Kevin; MD, MPH; Carli, Franco; MD, MPhil; Fried, Gerald; Feldman, Liane; Lee, Lawrence; MD, PhD

Annals of Surgery. 270(3):493-501, September 2019.

DOI: 10.1097/SLA.000000000003465

FIGURE 2. Kaplan-Meier survival curves of 5-year disease-free survival in patients undergoing prehabilitation vs control for (A) all stages and (B) stage III disease.

Summary

- Major surgery
 - significant morbidity and surgical stress
- ERAS are evidence based perioperative protocols
 - reduces surgical stress
 - improves postoperative outcome
- Stress reduction
 - associated to long term oncologic outcome

The million dollar question

Postoperative insulin resistance – Good or bad ?

Beneficial when you were injured in ancient times?

	Postop	NIDDM
Hyperglycemia	+	+
Insulin sensitivity	-	-
Glucose production	+	+
Glucose uptake	-	-
GLUT4 translocation	-	-
Glycogen formation	-	-

